Schatten-von Neumann ideal behaviour of a generalized Stieltjes transformation in Lebesgue space

نویسندگان

  • Elena Ushakova
  • Elena P. Ushakova
چکیده

A compactness criterion for Stieltjes transformation S λ : L 2 → L 2 of the form (1.1) is obtained. The main result is conditions for belonging S λ to Schatten-von Neumann class S p , 0 < p < ∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group

We inspect the relationship between relative Fourier multipliers on noncommutative Lebesgue-Orlicz spaces of a discrete group Γ and relative Toeplitz-Schur multipliers on Schatten-von-Neumann-Orlicz classes. Four applications are given: lacunary sets, unconditional Schauder bases for the subspace of a Lebesgue space determined by a given spectrum Λ ⊆ Γ , the norm of the Hilbert transform and th...

متن کامل

Upper and Lower Bounds for Regularized Determinants

Let Sp be the von Neumann-Schatten ideal of compact operators in a separable Hilbert space. In the paper, upper and lower bounds for the regularized determinants of operators from Sp are established.

متن کامل

Factorization of Operators on C

Let A be a C∗-algebra. We prove that every absolutely summing operator from A into l2 factors through a Hilbert space operator that belongs to the 4-Schatten-von Neumann class. We also provide finite dimensional examples that show that one can not replace the 4-Schatten-von Neumann class by p-Schatten-von Neumann class for any p < 4. As an application, we show that there exists a modulus of cap...

متن کامل

Tauberian-type theorems with application to the Stieltjes transformation

The Abelian and Tauberian-type theorems were introduced by Stanković [7] and Pilipović et al. [5]. In the first part of this paper, we give the definition of the quasiasymptotic expansion at 0+ and the quasiasymptotic behaviour of distributions at infinity from S′+ introduced in [1]. In this paper, we give the definition of space L′(r), classical Stieltjes transformation, modified Stieltjes tra...

متن کامل

Lower Bounds for Eigenvalues of Schatten-von Neumann Operators

Let Sp be the Schatten-von Neumann ideal of compact operators equipped with the norm Np(·). For an A ∈ Sp (1 < p <∞), the inequality [ ∞ ∑ k=1 |Reλk(A)| ] 1 p + bp [ ∞ ∑ k=1 | Imλk(A)| ] 1 p ≥ Np(AR)− bpNp(AI) (bp = const. > 0) is derived, where λj(A) (j = 1, 2, . . . ) are the eigenvalues of A, AI = (A − A∗)/2i and AR = (A + A∗)/2. The suggested approach is based on some relations between the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009